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Abstract 

Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics 
of a single protein molecule averaged over a very long time resembles that of an ensemble. Here, by 
performing single-molecule fluorescence resonance energy transfer (smFRET) experiments and 
molecular dynamics (MD) simulations of a multi-domain globular protein, cytoplasmic protein-
tyrosine phosphatase (SHP2), we demonstrate that the functional inter-domain motion is 
observationally non-ergodic over the time spans 10-12 to 10-7s and 10-1 to 102 s. The difference 
between observational non-ergodicity and simple non-convergence is discussed. In comparison, a 
single-strand DNA of similar size behaves ergodically with an energy landscape resembling a one-
dimensional linear chain. The observed non-ergodicity results from hierarchical connectivity of the 
high-dimensional energy landscape of the protein molecule. As the characteristic time for the protein 
to conduct its dephosphorylation function is ~10 s, our findings suggest that, due to the non-
ergodicity, individual, seemingly identical protein molecules can be dynamically and functionally 
different. 

Introduction 

 Most functional processes of proteins involve internal motion, often requiring transitions 
between conformational states1-3. As a globular protein is chemically and structurally highly 
heterogeneous, this leads to a complex energy landscape over which the protein moves. In turn, a 
rich variety of motions over the landscape are seen, and these are present over a remarkable time 
span stretching from femtoseconds up to seconds and beyond. How these motions on different 
timescales relate to and influence each other, and how the overall characteristics of internal dynamics 
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relate to biological function is of particular interest in biophysics. Also, the intriguing possibility 
exists that otherwise identical single protein molecules might be physically distinct on timescales 
approaching their functional times (e.g., enzyme catalytic rates4,5). In this regard, a particularly 
interesting question is whether internal protein dynamics is ergodic, i.e., in the limit of long 
measurement times, time-averaged observables are equal to its ensemble average. Ideally, non-
ergodic means non-converged quantities on all timescales. Clearly, in practice, as a result of temporal 
limitations on experiments and simulations, all time scales cannot be reached. Therefore, there is no 
rigorous way of using data obtained on finite timescales to distinguish between non-ergodic and 
ergodic systems. On finite timescales, true non-ergodicity cannot be distinguished from transient 
non-convergence. However, even on limited timescales, dynamics can be described using models 
that are either themselves ergodic or non-ergodic. This distinction is important because theories of 
protein function are usually formulated in terms of ensemble averages, and if these are not equivalent 
to time averages, then they are erroneous. We refer to non-ergodicity on a finite timescale as 
“observational non-ergodicity”. 

Various experiments have demonstrated measurements of the internal dynamics of ensembles 
of a folded protein under physiological conditions to be non-exponential in time3,6,7. However, this 
non-exponential (or ‘anomalous’) behavior has been described using ergodic models (such as the 
generalized Langevin equation or fractional Brownian motion6,8-10) or from non-ergodic models 
(such as a subdiffusive continuous-time random walk3,11). Whereas the non-exponential scenario has 
been found in numerous single-molecule fluorescence experiments and molecular dynamics (MD) 
simulations6,8-10, non-ergodic interpretations have been relatively unexplored3.  

The present work focuses on discussing the observational non-ergodicity of a protein 
observed in the time windows probed by the smFRET experiments (10-1 to 102 s) and MD simulation 
(10-12 to 10-7 s). Although the systematic experimental exploration of the non-ergodicity of proteins 
molecule is lacking, its existence is consistent with, and indirectly supported by, experimental 
observations of static disorder in enzymatic behavior12-18, in which reaction rates of individual 
enzyme molecules are found to be many-fold different, with the differences sustained for the entire 
experimental time window (~hours). Notwithstanding, the vast majority of single-molecule and 
ensemble experiments have described protein internal motions using ergodic frameworks6,19-24. 
Whether protein internal motion is non-ergodic on any given timescale remains actively debated 
among theoretical and computational researchers11,25,26, and its resolution requires thorough 
experimental tests.  

Here, to examine the ergodicity of protein internal dynamics over a range of times, we 
conduct single-molecule fluorescence resonance energy transfer (smFRET) experiments and all-atom 
molecular dynamics (MD) simulations on the cytoplasmic protein-tyrosine phosphatase (SHP2). 
SHP2 is a multi-domain protein (Fig. 1a), participating in multiple cellular signaling processes, 
including the Ras/MAPK and Hippo/YAP pathways27. As reported recently, SHP2 is prone to liquid-
liquid phase separation (LLPS)2, in which the proteins coalesce to form condensation droplets 
different from the surrounding cytoplasmic environment2,28. LLPS of SHP2 has been demonstrated to 
play a crucial role in regulating and triggering Noonan syndrome (NS)29, juvenile myelomonocytic 
leukemias (JMMLs)30, and cancers2,27. Although this protein is used mainly as a model system in the 
present work to characterize the dynamical heterogeneity in a typical globular protein, there may be 
some implications of the results for LLPS formation, discussed later. 

The present MD simulations and smFRET experiments demonstrate that functional inter-
domain motions in the protein show heterogeneity over two wide time windows: from 10-12 to 10-7 s 
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and 10-1 to 102 s. Moreover, as illustrated by control simulations and experiments on a single DNA 
chain of similar size, which behaves ergodically, we demonstrate how the anomalous dynamics of 
the protein arises from the characteristic protein energy landscape, which has a much higher 
dimensionality and unique hierarchical structure. Importantly, biochemical studies have determined 
that the timescale associated with SHP2 phosphatase activity is tens of seconds2. As the observed 
non-ergodicity extends beyond this timescale, this could impact the function of this enzyme in its 
native biochemical signaling network.  

Results 

1. The SHP2 conformational heterogeneity revealed by smFRET 

As shown in Fig. 1a, SHP2 contains two Src homology-2 domains (N-SH2, grey; C-SH2, blue), 
a central PTP catalytic domain (gold), and a C-terminal tail2. The relative motion between the N-SH2 
and PTP domains is crucial for its function2, and is characterized here by smFRET experiments on 
the timescale of 0.1 to 200 s. For these experiments, two selected residues (Q87 and K266), located 
in the N-SH2 and PTP domains, were labeled with two conjugated fluorescent dye molecules (donor 
Cy3 and acceptor Cy5, green and red spots in Fig. 1a), and their fluorescence intensities are denoted 
as ID and IA, respectively. The energy transfer efficiency, defined as EFRET = IA / (IA + ID), is directly 
related to the inter-dye distance, with a smaller value of EFRET corresponding to a longer distance31. 
Thus, EFRET monitors the temporal evolution of the distance between the two labeled residues 
(additional experimental details are available in the Supplementary Methods). 

We obtained 254 single-molecule FRET trajectories of SHP2, for which the fluorescence 
intensity of Cy3 and Cy5 are anti-correlated over time, and the trajectories used for analysis were 
truncated before photobleaching. Five representative single-molecule FRET trajectories are plotted in 
Fig. 1b-f. As can be seen, over the time window (0 ~ 200 seconds) probed, some protein molecules 
stay in one FRET state (Fig. 1b, c), while others transit between two (Fig. 1d, e) or three (Fig. 1f) 
distinct states. This behavior indicates that any single protein molecule explores only a portion of the 
conformational space sampled by the ensemble over the observation time window. To further 
illustrate this heterogeneity, Fig. 1g compares P(EFRET), the overall histogram of EFRET, averaged 
over an ensemble of 254 trajectories (blue, top panel) with those derived from each of the five 
individual trajectories in Fig. 1b-f. The ensemble-averaged P(EFRET) exhibits three major peaks, at 
0.45 (II), 0.65 (III), and 0.8 (IV), with a small shoulder at 0.2 (I), indicating at least four 
conformational states observed. In contrast, two of the five single trajectories (sm1, sm2) are located 
in one state, whereas the other three (sm3 to sm5) transition between two or three states in the time 
window observed.  

We note that the differences in the FRET values between the four states are significantly larger 
than the fluctuations within one state, and are also larger than the fluctuations of fluorescence 
intensity when the protein is labeled by only one dye molecule (see Supplementary Fig. 1). Moreover, 
for comparison, we also provide the smFRET results of a single-stranded DNA (Fig. 1h-k, 
experimental details in supplementary information), denoted as ssDNA, whose radius of gyration (Rg) 
is ~ 3.4 nm, close to that of the SHP2 protein (Rg ~ 2.7 nm). The ssDNA presents only one FRET 
state (Fig. 1k; EFRET = 0.25 ± 0.05, for mean ± s.d.), similar to previous reports32,33. All the above 
comparisons demonstrate that the four observed FRET states of SHP2 result from different 
conformations of the protein molecule rather than photobleaching, blinking, fluctuation of laser 
intensity, or any other instrumental or environmental factors.  
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To quantitatively characterize how each single-molecule FRET trajectory explores the four 
conformational states in the protein, we applied a four-state hidden Markov model (HMM)34. Details 
of the model can be found in the supplementary information. The analysis was conducted on 127 
trajectories chosen from the overall 254 such that each of them lasted at least 100 s before 
photobleaching. Only the first 100 s of the chosen trajectories were analyzed to guarantee the 
comparison was conducted for the same length of time. The 127 trajectories were categorized into 
nine subgroups. As can be seen in Fig. 2, subgroups I to IV correspond to the case in which the 
protein molecule stays in one single state over the entire 100 s (Fig. 2a-d), subgroups V to VIII 
correspond to molecules transitioning between two states (Fig. 2e-h) and subgroup IX is the case in 
which the protein transitions among three states over the 100 s (Fig. 2i). We show the relative 
populations of these nine subgroups in Fig. 2j. As can be again seen, a significant degree of 
dynamical or conformational heterogeneity is present among different trajectories. This 
heterogeneity, i.e., the same species of the molecule exhibiting distinct conformations, and remaining 
different on the 0.1 ~ 200 s time window, is a manifestation of observational non-ergodicity35. The 
transitions between different FRET states are further analyzed in a transition density plot 
(Supplementary Fig. 3), in which the transitions between states I and II and between states III and IV 
are most evident.  

2. Observational non-ergodicity in SHP2 measured by MD 

Complementing the above experiments, we also conducted 100 independent MD simulations of 
the single protein in an aqueous solution at ambient conditions. Each of these was 100 ns long and 
started from the same initial structure (details in Supplementary Methods). To characterize the inter-
domain motion of the protein in each single MD trajectory, we calculated the corresponding time-
averaged mean-squared atomic displacement (TA-MSD)36,37: 

.                                                      (1) 

where xk(t') denotes the distance between two residues Q87 and K266, which defines the inter-
domain distance, of the kth MD trajectory at time t', Δ is the lag-time, and t is the time window used 
for the analysis. As shown in Fig. 3a,  deviates widely among individual MD trajectories, 
especially at large Δ, indicating considerable dynamical heterogeneity. Fig. 3b compares the time-
ensemble-averaged MSD (TEA-MSD, Supplementary Equation 3), , with that obtained only 

through ensemble averaging without time averaging (EA-MSD),  (Supplementary Equation 4). 
These two quantities differ considerably from each other, directly confirming the breaking of 
ergodicity on the time scale probed by the MD (1 ps ~ 100 ns)36,37.  

Another standard test for ergodicity is the scatter distribution36, ϕ(𝜉k), where 𝜉k is defined as a 
dimensionless ergodic-breaking parameter . ϕ(𝜉k) gives information on the 

distribution of TA-MSD among trajectories at a given lag time, Δ. For an ergodic or homogeneous 
system, ϕ(𝜉k) will show a narrow peak at 𝜉k = 1, whereas a non-ergodic process will assume a skewed 
distribution, with the peak located away from 136. As shown in Fig. 3c, the MD-derived ϕ(𝜉k) is 
rather broad, with the most intense peak located well below 1, indicating the protein molecules in 
many MD trajectories are highly restrained, displaying flexibilities below the average. Hence, again, 
the inter-domain motion of the protein is non-ergodic and heterogeneous over the 1 ps ~100 ns time 
window probed by MD. 

( ) ( ) ( )
2

2

0

1 t -

k k k,t x t' x t' dt'
t-

D
d D D

D
= + -é ùë ûò

( )2
k ,td D

( )2 ,td D

( )2d D

( ) ( )2 2
k k ,t ,tx d D d D=



 5 

Non-ergodic phenomena have been reported in various complex biological systems, such as 
the diffusion of a nanoparticle in an actin filament network38, the lateral movement of protein 
molecules in the cell membrane39,40, and the transportation of protein granules in the cytoplasm of 
living cells41. Accompanying the non-ergodicity, these systems often show striking aging phenomena 
in which the effective mobility of the studied particle is reduced upon increasing the observation 
time36,37, as manifested as a decay of the TEA-MSD over t at a given Δ. Non-ergodicity is related to 
the aging properties of the processes involved, that is, the dependence of physical observables on the 
time span between the initialization of the system and the start of the measurement. Fig. 3d shows the 
TEA-MSD vs. the length of the trajectory, obtained by truncating the data at an observation time t 
and performing a temporal average (i.e., a moving average). As can be seen in Fig. 3d, the TEA-
MSD decays with t as a power-law: TEA-MSD ~ t-0.2. Indeed, the internal dynamics of SHP2 ages 
with the observation time.  

3. The difference between non-convergence and observational non-ergodicity 

Combining Figs. 1-3, one can conclude that the inter-domain motions of SHP2 are 
heterogeneous over wide time ranges: 10-12 ~ 10-7 s for the MD and 0.1 ~ 200 seconds for the 
smFRET. Given the broad distribution of relaxation timescales for internal protein motions, one 
might wonder whether the observed non-ergodic dynamics in the protein results from non-
convergence, i.e., that the observed time window is shorter than the longest relaxation time in the 
system42. To explore this question, we carried out MD simulations on the single-stranded DNA 
(ssDNA), whose smFRET experimental results were displayed in Fig. 1h-k. Here, the normalized 
autocorrelation functions (Supplementary Equation 6) were calculated from the simulation 
trajectories to measure the convergence of the systems. As seen in Fig. 4a, b, both SHP2 and ssDNA 
exhibit non-converged dynamics, i.e., the autocorrelation function decays progressively slower when 
prolonging the time window for analysis, with no convergence from 1 ps to 100 ns. Moreover, as 
seen in Supplementary Fig. 4, the distributions of the characteristic distance in both the protein and 
ssDNA vary significantly with the observation time, further confirming the non-convergence of the 
dynamics in the two systems on the time scale explored (1 ps - 100 ns). However, for ssDNA, its 
TEA-MSD and EA-MSD almost overlap (Fig. 4c), revealing no appreciable non-ergodicity. Such 
ergodic behavior in ssDNA derived from MD is consistent with the smFRET experimental results on 
it (see Fig. 1h-k), where all individual ssDNA molecules stay in one FRET state over ~ 100 s. 
Moreover, further analysis of the MD trajectories shows no significant aging in ssDNA (Fig. 4d). 
These results demonstrate that although both the protein and DNA albeit exhibit non-converged MD 
dynamics (Fig. 4a, b), the absence of non-ergodicity in the ssDNA (Fig. 4c, b) is qualitatively 
different from the non-ergodic behavior of the protein (Fig. 3). 

Non-converged dynamics can result from two phenomena. One of these is long memory in 
dynamics beyond observational time. For example, fractional Brownian motion with an infinitely 
long memory will never converge but will itself be ergodic43. The other phenomenon is the existence 
of too many distinct conformational states for a single protein molecule to sample over the 
observation time, i.e., observational non-ergodicity11,44. Hence, by comparing the dynamical 
behavior of the ssDNA, one can unambiguously conclude that non-convergence alone cannot cause 
the non-ergodicity observed in SHP2 protein. 

4. The energy landscape of protein SHP2 and a single-stranded DNA  

To explore the protein phase space in detail, following the procedure of Ref.11, we constructed a 
conformational cluster transition network (CCTN)11,45,46 based on a single MD trajectory, describing 
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conformational transitions of the protein molecule (Fig. 5a, b). Briefly, we assigned all protein 
conformations sampled to different conformational clusters based on their structural similarity as 
quantified by the root mean square deviation (RMSD) (more details in Ref. 47 and the caption to Fig. 
5). In the CCTN, a node corresponds to one conformational cluster, the population of which is given 
by the number of MD frames in it. A node with a darker color represents a cluster with a higher 
population. Edges with an arrow denote observed transitions between two conformational states, and 
the thickness of the arrow represents the transition probability. Thus, the CCTN coarse grains a 
continuous MD trajectory into discretized transitions between conformational states on the energy 
landscape11,45,46.  

An example of a CCTN obtained from the MD trajectory of the protein is presented in Fig. 5a. 
The network is highly complex and inhomogeneous, forming loosely connected hubs (see the regions 
enclosed by the dashed lines), where the inter-hub connections are rather limited, but the nodes 
inside the hub are densely connected with each other. We also performed the same network analysis 
from the MD trajectory of ssDNA (Fig. 5b). Compared to the protein, the CCTN of the ssDNA is 
much simpler, with most nodes having only two neighboring nodes and connected linearly without 
forming many hubs. 

To quantitatively examine the connections in the networks of the two systems, we analyzed the 
degree distribution, P(d), i.e., the probability distribution of the number of connections per node48. 
As shown in Fig. 5c, P(d) of the protein is much broader than that of the ssDNA, where the width of 
the distribution is 9.0 in the protein, about 5 times wider than that in the ssDNA (s.d. = 1.7). And the 
majority of nodes in the protein CCTN have more than 10 connecting neighbors, far more than that 
in the ssDNA (mean = 3.5). Moreover, one can examine the topological structure of the networks. 
Here, we applied a box covering method (see details in Supplementary Methods) to estimate the 
fractal dimension48,49. The fractal dimension determined for the protein network is 1.7 (Fig. 5d, blue), 
consistent with an earlier study on another protein, phosphoglycerate kinase, for which the value was 
found to be 2.411. In contrast, the fractal dimension of the ssDNA is about 1.0, indicating it resembles 
a one-dimensional linear network (Fig. 5d, purple). We also compared the node strength (s), i.e., the 
frequency of visiting each node in the network50. As shown in Fig. 5e, the CCTN of the protein has 
many heavily visited nodes (s > 100), which are the center nodes of the hubs (highlighted in green in 
Fig. 5a). In contrast, such heavily visited nodes are absent for ssDNA. This results from the 
hierarchical structure of the energy landscape of the protein in which the protein frequently visits the 
nodes inside any given hub but takes a long time to escape out as relatively few transition paths 
connect to external hubs. As a result, long-lived metastable conformations of the protein result (see 
Figs. 1-2). 

The above comparative analysis reveals that the SHP2 protein has a much more complex energy 
landscape than the ssDNA, with a higher dimensionality and a much more hierarchical structure, and 
the conformational states have many more connecting neighbors. All these features lead to the 
protein molecule having many different pathways to transit between any two distant states, and also 
lead to it staying in single metastable states, the hub centers, for long times. This network structure 
leads to heterogeneous dynamics among individual protein molecules observed over a long period of 
time, i.e., observational non-ergodicity. 

Finally, we note that the timescales explored by MD simulations (10-12 to 10-7 s) and by single-
molecule FRET experiments (0.1 to 200 s) differ by six orders of magnitude. However, as shown in 
Supplementary Fig. 5, both the topological structure and the degree distribution of the CCTN of the 
protein are scale-free, i.e., independent of whether the simulation is 100 ns or 1 μs long. This scale-
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free and self-similarity character of the energy landscape was shown earlier for several different 
proteins over many decades in time11. Hence, we attribute the non-ergodic dynamics in the protein to 
its characteristic high-dimensional, hierarchical, self-similar complex energy landscape. 

Discussion and Conclusion 

The analysis of dynamics over a finite time window does not permit a determination of the 
ergodicity of the system on infinite timescales42. Therefore, it is only meaningful to discuss non-
ergodicity over a certain observational time window, i.e., observational non-ergodicity, and this is 
what is examined in the present work. Observational non-ergodicity has been documented on the 
time window of 0.01 ~ 100 seconds in various biological phenomena, including the transport of 
protein molecules or nanoparticles through complex macroscopic biological systems, such as cell 
membranes, living cells, and actin filaments38-41. These systems are large enough (> 1 μm) and have 
structures that are complex and heterogeneous enough to produce complex, non-ergodic dynamics. 
Single-molecule force-clamp spectroscopy has demonstrated non-ergodicity to occur when unfolding 
a protein molecule on the time window of 0.01 ~ 10 s18,51. However, unfolding corresponds to a 
dramatic perturbation of the biomolecule, far away from its folded globular functional state. Here, we 
demonstrate that observational non-ergodic dynamics is also present in the internal motions of a 
small globular protein in its physiological folded state over a timescale longer than the characteristic 
time for the protein to perform its dephosphorylation function2. Comparison with the simulation and 
experimental results of a control system, a single-strand DNA of similar size, illustrates that non-
convergence alone can not cause the observed non-ergodic dynamics in the protein. Rather, non-
ergodicity results from the high-dimensional, hierarchical connectivity in the energy landscape of the 
protein. 

Dynamical heterogeneity on functional timescales, due to relaxation processes existing on 
these timescales or longer, will theoretically lead to functional differences. The observed dynamical 
heterogeneity in the protein is thus likely to lead to the population splitting of individual enzyme 
molecules with theoretically different catalytic rates4,5. This is consistent with the experimental 
observation of “static disorder” of enzymatic rates among individual enzyme molecules, in which the 
catalytic rates of individual enzyme molecules can be many-fold different, with the differences 
sustained for hours12-16,18. Moreover, one can see from Fig. 1g that the protein is trapped in very 
different conformational states for tens or hundreds of seconds. Such long-lived diverse 
conformational states could trap the SHP2 protein molecules in different conformations for 
sufficiently long times to diffusively find a partner with complementary shape and electrostatic 
interactions, leading to association and, in turn, triggering the liquid-liquid phase separation (LLPS) 
for which this particular protein is known2.  

A final, intriguing question arises as to whether observational non-ergodicity among 
individual protein molecules will disappear when the observation time extends beyond hundreds of 
seconds probed here. For a single protein in an aqueous solution, at some point in time, the folding: 
unfolding equilibrium will be well sampled, and, if one ignores degrading chemical reactions, one 
would then expect ergodicity to be reached. However, this question cannot be addressed in this work. 
Further, an experimental work on another multi-domain protein3, Hsp90, using plasmon rulers has 
revealed extremely long-lived (~12 hours) open and closed configurations. The extent of non-
ergodicity in internal motions of proteins of different structure and function and the biological 
implications of this will be a topic for future research. 
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Methods 

We used prism-type total internal reflection fluorescence (TIRF) microscopy for 
measurement as described previously2,52. Data were recorded with a time resolution of 100 ms for all 
cases (SHP2, Donor only, and ssDNA). The coverslip was coated with polyethylene glycol and 
biotinylated PEG (mPEG-SVA and Biotin-PEG-SVA, molar ratio 97∶3). Then, fluorescently labeled 
and 1D4 tagged proteins were immobilized via a biotinylated antibody (Fab-biotin, anti-1D4tag) 
attached through neutravidin to the passivated quartz slides (Fig. 1a). This immobilization scheme 
has been reported for other proteins in studies of their dynamics and functions53. The biotinylated 
ssDNA was directly immobilized through neutravidin to the coverslips (Fig. 1h). The smFRET 
experiments were performed at room temperature of 25 ℃. The protein sample was prepared in a 
working buffer (500 mM NaCl, 50 mM HEPES, 2mM TECP, 5% glycerol at PH 7.5). The 
experiment was incubated for 10 min before image acquisition started. Subsequent single-molecule 
videos were measured in imaging solution (75 mM NaCl, 75 mM KCl, 50 mM HEPES, 0.5 mM 
TCEP at pH 7.5) for protein, and T50 buffer for ssDNA. An enzymatic deoxygenation system 
(0.625% wt/vol glucose, 0.8 mg/ml glucose oxidase, 0.03 mg/ml catalase, 3 mM Trolox) was added 
into the buffer to alleviate the fluorescent photobleaching and blinking2. 

Measurements 

  Methods of single-moelcule protein and single-stranded DNA sample preparation, Cy3/Cy5 
labeling, smFRET data analysis, and molecular dynamics simulations, and related theoretical 
analysis were described in supporting information. 
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Figures 

 

Fig. 1 Protein SHP2 and single-stranded DNA (ssDNA) internal dynamics were revealed by 
smFRET. (a) Schematic diagram of the experimental setup used for the protein single-molecule 
measurements. The structure of SHP2 contains two Src homology-2 domains (N-SH2, grey; C-SH2, 
blue) and a PTP domain (gold). Cy3-Cy5 (green and red spheres), a FRET pair of dye molecules, 
were labeled on residues 87 and 266, i.e., N-SH2 and PTP domain, respectively. The 1D4-tagged 
protein was immobilized on PEG passivated coverslips through a biotinylated antibody (fab-biotin) 
and imaged via TIRF microscopy. (b-f) Five representative single-molecule (sm) fluorescence 
trajectories of protein, where the intensities of donor and acceptor dye molecules, IA and ID, are 
presented in the upper panel while the resulting FRET efficiency, EFRET = IA / (IA + ID), is shown in 
the bottom panel. The events of photobleaching are indicated by arrows. (g) The overall distribution 
(top) of FRET efficiency P(EFRET) was obtained from 254 protein smFRET trajectories together with 
the distributions of EFRET for each of the five single-molecule (bottom) trajectories presented in (b-f). 
The illustrated histogram reveals a shoulder centered at 0.2 (ultra-low FRET, state I) and three major 
low/mid/high FRET states centered at 0.45 (II), 0.65 (III), 0.8 (IV). The total EFRET histogram was 
fitted with four Gaussian peaks (blue line in top panel). (h) Control experiment of single-stranded 
DNA (ssDNA) dynamics. ssDNA was labeled with a cy3/5 FRET pair at 50 monomer separations. 
(i-j) Two experimental ssDNA single-molecule traces. (k) The ensemble-averaged distribution of 
FRET efficiency (green bars and area) P(EFRET), and FRET histogram of one trajectory (green lines) 
for the ssDNA. Unlike the SHP2 (g), which can assume several FRET states, the ssDNA shows a 
single FRET state centering at 0.25 ± 0.05, similar to previously reported32.  
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Fig. 2 Categorizing the experimental smFRET traces into nine subgroups based on the hidden 
Markov modeling analysis. Here, 127 FRET traces were chosen from the overall 254 trajectories to 
ensure each trace lasts at least 100 seconds long, and only the first 100 seconds of the trace were 
used for analysis. (a-d) P(EFRET) of typical single-molecule example traces for Subgroup I to IV 
where the protein molecule stays at one state for over 100 seconds. (e-h) Example traces for 
Subgroup V to VIII where the protein molecule transits between two states over 100 seconds. (i) In 
the example trace for Subgroup IX the protein molecule transitions between three states over 100 
seconds. (j) The relative populations of the nine subgroups summed over 127 traces. 
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Fig. 3 Subdiffusive, non-ergodic, and aging dynamics in SHP2 derived from molecular 
dynamics (MD) simulations. (a) TA-MSD as a function of lag time Δ for each of 100 independent 
MD trajectories. (b) Comparison of MD-derived ensemble-averaged MSD (EA-MSD, green) without 
time averaging and the time-ensemble-averaged MSD (TEA-MSD, blue). The large difference 
between EA-MSD and TEA-MSD directly proves the breaking of ergodicity on the MD time 
window36,37. (c) Scatter distribution, 𝜙(𝜉k), at Δ = 1 ns is skewed with the primary peak located much 
below 1. (d) TEA-MSD as a function of observation time, t, with three fixed lag times Δ as indicated 
(2 ns, 4 ns, and 8 ns). The dashed line in (d) guides the trend of decay.  
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Fig. 4 Control simulation on a single-stranded DNA (ssDNA). The normalized autocorrelation 
functions (Supplementary Equation 6) of distance fluctuation were obtained from molecular 
dynamics simulations for different trajectory lengths (i.e., 100 ps, 1 ns, 10 ns, 100 ns). Both (a) 
protein SHP2 and (b) ssDNA show non-converged dynamics. (c) MD-derived EA-MSD (blue) vs. 
TEA-MSD (green) for the ssDNA. (d) TEA-MSD of ssDNA as a function of observation time, t, 
with three fixed lag times Δ.  
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Fig. 5 Conformational cluster transition network (CCTN) of the protein SHP2 and ssDNA. (a) 
The network was produced using a 1 µs MD simulation trajectory with each snapshot saved at every 
10 ps. Each vertex represents one conformational state, corresponding to a group of protein 
conformations with a similar structure as defined by the cutoff value of RMSD. Here the cutoff is 
chosen as 1.6 Å, to ensure the number of vertices in each CCTN is comparable with each other and 
falls in the range of 200 ~ 500. The network has 396 vertices and 2120 edges. In the CCTN, 
conformational states with higher transition probability are arranged closer to each other. The 
darkness of the color indicates its occurrence rate, calculated by counting the total number of 
snapshots belonging to the cluster. The vertices mark with an integer in terms of the rank of 
occurrence probability. The directed edges denote a transition between two conformational states 
observed in MD and are weighted by the associated transition probability. The networks representing 
the energy landscape were produced using the Python module graph-tool. The green vertices 
correspond to the most visited nodes (strength, s > 100) in the protein network. Such heavily visited 
nodes are absent in ssDNA. The dashed lines highlight the hub regions, where the internal nodes are 
densely connected with each other, but only a few paths are connected to the outside. (b) The CCTN 
of the single-stranded DNA (ssDNA) was derived using a similar method as above, using a 1 μs 
simulation with snapshots saved at every 10 ps. It shows a string-like feature with 319 nodes and 564 
transitions, and the RMSD cutoff is 4.0 Å. (c) The degree distributions P(d) were derived from the 
protein SHP2 (blue) and ssDNA (purple) transition network in (a) and (b), respectively. The blue and 
purple lines represent log-normal fits (Supplementary Equation 7). The mean values and standard 
deviations of connecting degrees are displayed in the legend. (d) We applied a box covering 
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algorithm to the CCTN to derive the fractal dimension of the transition networks in (a) and (b). The 
number of the boxes (Nb) required to cover the CCTN normalized by the total number of nodes (Nv) 
in the network, is plotted as a function of the box’s length, lb. The power-law fit (blue) suggests the 
underlying protein energy landscape is a self-similar fractal with a dimension ~1.7. While the 
number of boxes (Nb) shows a linear relationship with box length (lb) for the ssDNA network in (b), 
indicating the energy landscape of ssDNA is relatively flat with the one-dimensional geometry of 
CCTN rather than fractal. (e) The histograms of strengths P(s), i.e., the distribution of frequency of 
each node being visited observed in MD, were obtained from the protein SHP2 (blue) and ssDNA 
(purple) transition network in (a) and (b), respectively.  
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